
F# FORCES BETWEEN CHARGES & DIPOLES

- One of the 1st things you learn about point charges is

Coulomb 's Law
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- How would we derive this if we only knew about

electrostatic potential and potential energy ?
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- If charge qz is @ Fz then the pair has potential energy
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- To get the force Fiz that 9 ,
exerts an qz ,

we take

minus the gradient of U with respect to the pos .

Fz of gz .

That is
,
how does U change if we move

92 a little ?
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- Likewise
,
to get Ez , we 'd take - FU .

So :
← E. = - ri ,
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- This way of working out forces is really handy if

we want to look @ how charges & dipoles respond to

each other.

- For example , an ideal dipole f located @ T
, produces

an electrostatic potential RECALL:
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So if a point charge q is placed @ Ez ,
their PE is
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- What forces do they exert on each other? We can

find them as we did above .

- To simplify the math a little
,
lets say the dipole is

@ the origin ( T
,
-_ o ) .
It has a direction

, f , so we 'll

Orient our axes so that f is the E direction .
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- The dipole singles out a direction ,
which we called E

.

If we put a charge q @ f -- S5 t ZE ( in Cylindrical
coords ) then the force exerted on it by the dipole

p E @ the origin is :
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U depends on s & Z , so F- has
no § component .

- This is very different than the Coulomb force ble two

point charges .
For starters

,
it is - Is rather than IT .

But it also depends on the direction F relative to f ,
which makes sense if we think of f as two charges IQ

separated in the E direction
.
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marginally attracted in the - I direction .

If q is down here ( z co) then ( z2)5/2=-2-5| ←
and the force flips direction compared to 2-70 .

That makes sense: closer to - Q & further from + Q .
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[ Again , if q > 0 then t Q repels
it & - Q attracts it

.
The nett.ge#q, effect is a force in the air.
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- So once we consider a point charge q interacting with a

dipole § ,
we get a qualitatively different sort of force

than we did for two point charges .

- It is weaker in the sense that it falls off like Yrs

rather than Yrz , and it depends on the direction of

the separation vector between E & q .

- What about two dipoles ?



- Dipole - dipole forces are important b/c most non - conducting
matter is essentially made of little neutral chunks that

behave like dipoles . These forces are important in Chem

& Bio .

- We can work out the PE for a pair of dipoles separated

by FL
,
as we did above . But it's more involved , so lets

just skip to U :
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Much more complicated than previous# Y
example ! Depends on magnitudes of

X dipoles , their relative directions, and

their directions relative to their

separation vector .

- To simplify our calculation lets set up our cords so that

F ,
is @ the origin and the second dipole Bz is @ Fz=F :
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- Then the force on Fz due to F ,
is :
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- We have to do a little work here , but let 's not get
caught up in the intermediate steps :
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- This force is more complicated than the point charge/

dipole example . Remember that with our set -up ,
F is

the separation vector from F ,
to Fz .

- Still ,
if we think of a generic dipole F as a little

vector pointing from a negative charge to a positive charge ,
we can understand this force

. Depending on theorientation
of the dipoles & their relative position , the force

can be attractive
, repulsive ,

or something else entirely .

- Let's set up our axes so that I = pi , and consider a few

possibilities for Ez e: f :
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a marginal attractive force . Flip
dir . of Fz & the dir . of Fiz reverses .
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or repulsive . Note that there

T is also a torque on Fz !
①
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Because E , , Fa , e: F are all orthogonal ,

Bz Ei F , experience no force .



- So dipole - dipole forces are even weaker in that they
fall off as n 11,4 , and can point in a variety of

directions ( and even be Zee ) depending on theorientationsand separation .

- Also
,
the dipoles may experience torques that try to

turn them
. The torques are a little more difficult to

write out , but you can see wht they occur
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Even @ a fixed distance bltp , & Fa , the
PE decreased if I , and §z turn to

line up with
F

.

- Higher - order multipole experience even weaker forces w/

more complicated dependence on orientation and separation .


